Continuum-armed bandits (a.k.a., black-box or $0^{th}$-order optimization) involves optimizing an unknown objective function given an oracle that evaluates the function at a query point, with the goal of using as few query points as possible. In the most well-studied case, the objective function is assumed to be Lipschitz continuous and minimax rates of simple and cumulative regrets are known in both noiseless and noisy settings. This paper studies continuum-armed bandits under more general smoothness conditions, namely Besov smoothness conditions, on the objective function. In both noiseless and noisy conditions, we derive minimax rates under simple and cumulative regrets. Our results show that minimax rates over objective functions in a Besov space are identical to minimax rates over objective functions in the smallest H\"older space into which the Besov space embeds.
翻译:连续持枪的匪徒(a.k.a.a.,黑盒或$0 ⁇ _th_s-order 优化)涉及优化一个未知的目标功能,给一个在查询点评估该功能的神器提供一种未知目标功能,目的是尽可能使用几个查询点,目的是尽可能少地使用查询点。在最受研究的案例中,目标功能假定是Lipschitz连续的,在无噪音和吵闹的环境中,简单和累积的遗憾的最小速率为Lipschitz,在无噪音和噪音的环境中,简单和累积的。本文研究在目标功能方面,即Besov光滑状态下,连续武装的匪徒。在无噪音和噪音的条件下,我们在简单和累积的遗憾下得出微速率。我们的结果显示,贝索夫空间中客观功能的最小速率与贝索夫空间所嵌入的最小H\老的客观功能的微速率相同。