We give a short proof of a stronger form of the Johansson-Molloy theorem which relies only on the first moment method. Our result implies that, for every graph $G$ of maximum degree $\Delta$ where every neighbourhood induces a subgraph of maximum degree $d$, $\chi(G) \le (1+o(1)) \frac{\Delta}{\ln \frac{\Delta}{d+1}}$ as $\frac{\Delta}{d+1} \to \infty$. The proof adapts a clever counting argument developed by Rosenfeld in the context of non-repetitive colourings. We then extend that result to graphs where each neighbourhood has bounded density, which strengthens results due to Vu, and Davies, P., Kang and Sereni. As a final touch, we show that our method provides an asymptotically tight lower bound on the number of colourings of sparse graphs.
翻译:我们给出了一个更强的约翰松- 摩洛伊定理形式的简短证据, 仅仅依靠第一时刻的方法。 我们的结果意味着, 对于每个街区引致最高比例的子集的每张图表, 每个街区都用最大比例的美元$\Delta$\le(1+1)\frac\Delta=Delta==d+1+$, 作为$\frac=Delta ⁇ d+1}\to\ infty$。 证据调整了罗森费尔德在非重复颜色背景下开发的智能计数参数。 我们随后将结果扩展至每个街区已连接密度的图表, 从而强化了Vu, P., Kang和Sereni应得的结果。 最后, 我们显示, 我们的方法对稀释图的颜色数量提供了一个微小的近乎乎乎乎其微的下的约束。