The Finite Element Method (FEM) is the gold standard for spatial discretization in numerical simulations for a wide spectrum of real-world engineering problems. Prototypical areas of interest include linear heat transfer and linear structural dynamics problems modeled with linear partial differential equations (PDEs). While different algorithms for direct integration of the equations of motion exist, exploring all feasible behaviors for varying loads, initial states and fluxes in models with large numbers of degrees of freedom remains a challenging task. In this article we propose a novel approach, based in set propagation methods and motivated by recent advances in the field of Reachability Analysis. Assuming a set of initial states and input states, the proposed method consists in the construction of a union of sets (flowpipe) that enclose the infinite number of solutions of the spatially discretized PDE. We present the numerical results obtained in four examples to illustrate the capabilities of the approach, and draw some comparisons with respect to reference numerical integration methods. We conclude that the proposed method presents specific and promising advantages, but the full potential of reachability analysis in solid mechanics problems is yet to be explored.
翻译:有限元素法(FEM)是在数字模拟中针对一系列广泛的现实世界工程问题进行空间分解的黄金标准。典型的兴趣领域包括线性热传输和线性结构动态问题,以线性部分分方程(PDEs)为模型。虽然存在直接整合运动方程式的不同算法,但探索不同负荷、初始状态和大量自由度模型通量的所有可行行为仍是一项具有挑战性的任务。在本篇文章中,我们提出了一个新颖的方法,其基础是设定传播方法,并受可及性分析领域最近进展的驱动。假设一套初步状态和输入状态,拟议的方法包括构建一组组合(流体),其中包含空间分解式PDE的无限数量的解决办法。我们用四个例子介绍从数字上得出的结果,以说明该方法的能力,并对参考数字集成方法作一些比较。我们的结论是,拟议的方法具有具体和有希望的优势,但固体机械问题中可及可达性分析的全部潜力仍有待探讨。