In recent years, the idea of using morphological operations as networks has received much attention. Mathematical morphology provides very efficient and useful image processing and image analysis tools based on basic operators like dilation and erosion, defined in terms of kernels. Many other morphological operations are built up using the dilation and erosion operations. Although the learning of structuring elements such as dilation or erosion using the backpropagation algorithm is not new, the order and the way these morphological operations are used is not standard. In this paper, we have theoretically analyzed the use of morphological operations for processing 1D feature vectors and shown that this gets extended to the 2D case in a simple manner. Our theoretical results show that a morphological block represents a sum of hinge functions. Hinge functions are used in many places for classification and regression tasks (Breiman (1993)). We have also proved a universal approximation theorem -- a stack of two morphological blocks can approximate any continuous function over arbitrary compact sets. To experimentally validate the efficacy of this network in real-life applications, we have evaluated its performance on satellite image classification datasets since morphological operations are very sensitive to geometrical shapes and structures. We have also shown results on a few tasks like segmentation of blood vessels from fundus images, segmentation of lungs from chest x-ray and image dehazing. The results are encouraging and further establishes the potential of morphological networks.


翻译:近年来,使用形态操作作为网络的想法引起了人们的极大注意。 数学形态学提供了非常高效和有用的图像处理和图像分析工具,这些工具基于以内核定义的放大和侵蚀等基本操作者, 提供了非常高效和有用的图像处理和图像分析工具。 许多其他形态学操作是用放大和侵蚀操作建立起来的。 虽然学习结构要素, 诸如利用回映算法进行变相或侵蚀等结构要素并不新鲜, 但使用这些形态操作的顺序和方式并不标准。 在本文中, 我们从理论上分析了利用形态操作处理 1D 特性矢量的处理方法, 并展示了这可以以简单的方式扩大到2D 案例。 我们的理论结果显示, 形态学区块代表了连接功能的总和。 在许多地方, 用于分类和回归任务( Breiman (1993年) 。 我们还证明, 普遍地标近近似于标值 -- 两个形态学区块块的堆叠可以比任意的缩写系统的任何连续功能。 为了实验性地验证这个网络在实际应用中的功效, 我们评估了它的形态构造结构结构结构结构结构结构结构, 显示, 我们从卫星结构上显示了它的细图象学结构的结果。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
123+阅读 · 2020年9月8日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
SepNE: Bringing Separability to Network Embedding
Arxiv
3+阅读 · 2019年2月26日
Embedding Logical Queries on Knowledge Graphs
Arxiv
3+阅读 · 2019年2月19日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【音乐】Attention
英语演讲视频每日一推
3+阅读 · 2017年8月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员