Assessing sensitivity to unmeasured confounding is an important step in observational studies, which typically estimate effects under the assumption that all confounders are measured. In this paper, we develop a sensitivity analysis framework for balancing weights estimators, an increasingly popular approach that solves an optimization problem to obtain weights that directly minimizes covariate imbalance. In particular, we adapt a sensitivity analysis framework using the percentile bootstrap for a broad class of balancing weights estimators. We prove that the percentile bootstrap procedure can, with only minor modifications, yield valid confidence intervals for causal effects under restrictions on the level of unmeasured confounding. We also propose an amplification to allow for interpretable sensitivity parameters in the balancing weights framework. We illustrate our method through extensive real data examples.
翻译:在观察研究中,评估对无法测算的混乱的敏感性是一个重要的步骤,这种研究通常根据对所有混乱者进行测量的假设估计影响。在本文件中,我们开发了一个平衡估计重量的敏感度分析框架,这是一种日益流行的方法,解决了最优化问题,以获得能直接减少共变不平衡的加权数。特别是,我们调整了一个敏感度分析框架,将百分位靴带用于广泛的平衡估计重量的类别。我们证明百分位靴套件程序,只要稍作修改,就可以产生有效的信任间隔,以弥补限制非计量的混杂程度造成的因果影响。我们还提出一个扩大,以便在平衡加权框架中允许解释可解释的敏感度参数。我们通过广泛的真实数据实例来说明我们的方法。