Ptychography is an imaging technique that has various scientific applications, ranging from biology to optics. The method scans the object of interest in a series of overlapping positions, thereby generating a set of multiple Fourier magnitude measurements that are potentially corrupted by noise. From these measurements, an image of the object can be reconstructed depending on how the related inverse problem is formulated and solved. In this paper, we propose a class of variational models that incorporate the weighted anisotropic--isotropic total variation (AITV), an effective regularizer for image recovery. This class of models is applicable to measurements corrupted by either Gaussian or Poisson noise. In order to have the models applicable for large number of ptychographic scans, we design an efficient stochastic alternating direction method of multipliers algorithm and establish its convergence. Numerical experiments demonstrate that from a large set of highly corrupted Fourier measurements, the proposed stochastic algorithm with AITV regularization can reconstruct complex-valued images with satisfactory quality, especially for the phase components.
翻译:物理学是一种具有从生物学到光学等各种科学应用的成像技术。 这种方法扫描一系列重叠位置中感兴趣的对象, 从而产生一系列可能因噪音而腐蚀的多重四倍级测量结果。 通过这些测量, 物体的图像可以重建, 取决于相关的反向问题是如何形成和解决的。 在本文中, 我们建议了一组变异模型, 其中包括加权的厌食- 异谱- 共变异( AITV ), 一种有效的图像恢复调节器。 这一类模型适用于被高山或普瓦森噪音腐蚀的测量结果。 为了将模型应用于大量的脉冲扫描, 我们设计了一个高效的振动交替方向的乘数算法, 并确立其趋同性。 数字实验表明, 从大量高度腐蚀的四倍数测量结果中, 拟议的具有ARTV 正规化作用的随机算法可以重建质量令人满意的复杂价值图像, 特别是阶段部件。