Lung nodule malignancy prediction is an essential step in the early diagnosis of lung cancer. Besides the difficulties commonly discussed, the challenges of this task also come from the ambiguous labels provided by annotators, since deep learning models may learn, even amplify, the bias embedded in them. In this paper, we propose a multi-view "divide-and-rule" (MV-DAR) model to learn from both reliable and ambiguous annotations for lung nodule malignancy prediction. According to the consistency and reliability of their annotations, we divide nodules into three sets: a consistent and reliable set (CR-Set), an inconsistent set (IC-Set), and a low reliable set (LR-Set). The nodule in IC-Set is annotated by multiple radiologists inconsistently, and the nodule in LR-Set is annotated by only one radiologist. The proposed MV-DAR contains three DAR submodels to characterize a lung nodule from three orthographic views. Each DAR consists of a prediction network (Prd-Net), a counterfactual network (CF-Net), and a low reliable network (LR-Net), learning on CR-Set, IC-Set, and LR-Set, respectively. The image representation ability learned by CF-Net and LR-Net is then transferred to Prd-Net by negative-attention module (NA-Module) and consistent-attention module (CA-Module), aiming to boost the prediction ability of Prd-Net. The MV-DAR model has been evaluated on the LIDC-IDRI dataset and LUNGx dataset. Our results indicate not only the effectiveness of the proposed MV-DAR model in learning from ambiguous labels but also its superiority over present noisy label-learning models in lung nodule malignancy prediction.
翻译:肺部结核恶性肿瘤预测是早期诊断肺癌的一个重要步骤。除了常见的困难之外,这项任务的挑战也来自注解者提供的模糊标签,因为深层学习模型可能学习,甚至放大其中所含的偏差。在本文中,我们提议了一个多视图“divide-and-ruel”(MV-DAR)模型,从可靠和模糊的注释中学习肺部结核恶性肿瘤预测。根据说明的一致性和可靠性,我们将结核分为三组:一个一致和可靠的数据集(CR-Set)、一套不一致的数据集(IC-Set)和一套低可靠性的标签(LR-Net-Set ) 。在多个射电学家的注解中,IC-Set的结核“dal-alder-alder-Net-Net-Net-S ” (LM-Net-Net-Net-Net-Net-Net-Net-Net-Net-Net-Net-S) 中,只用一个注解的模型和数字-RODR-Net-Net-Net-LS 数据模型(LS) 和数字-LS 数据-LS 学习的数学-S 和数字-LS 和数字-LIS-S 数据-S 数据-S 和数字-S 数据-S 数据-S 数据-S 数据-S 数据-S-S-S-S-S 数据-S-S-S-S-S-S- 学习的模型- 的模型- 数据-S-经进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进进化的模型-进进进进进进进进进进进进和变的模型-和进进进进和变的模型- 。 和进和进和进和经-和数据-进和经-进和经- 和数据-和数据-进进进进进进进进进进进进进进进进进进进进进进进进的模型-和数据-和数据-和数据-和数据- 和数据-进进进进进进进进进进进进进进进进进-代的模型- 和数据-