We introduce a class of systems of Hamilton-Jacobi equations characterizing geodesic centroidal tessellations, i.e. tessellations of domains with respect to geodesic distances where generators and centroids coincide. Typical examples are given by geodesic centroidal Voronoi tessellations and geodesic centroidal power diagrams. An appropriate version of the Fast Marching method on unstructured grids allows computing the solution of the Hamilton-Jacobi system and therefore the associated tessellations. We propose various numerical examples to illustrate the features of the technique.
翻译:我们引入了一组汉密尔顿-Jacobi等式系统,这些系统以大地测深的近地点为特征,即与发生器和近地点相交的大地测深距离有关,典型的例子有:大地测深的近地点的Voronoi星系和大地测深的近地点的近地点电图,对无结构电网的快速进取方法的适当版本可以计算出汉密尔顿-Jacobi系统的解决办法,从而计算出相关的星系。我们提出了各种数字例子来说明该技术的特点。