This paper focuses on the problem of \textcolor{black}{semi-supervised} domain adaptation for time-series forecasting, which is an easily neglected but challenging problem due to the changeable and complex conditional dependencies. In fact, these domain-specific conditional dependencies are mainly led by the data offset, the time lags, and the variant data distribution. In order to cope with this problem, we analyze the variational conditional dependencies in time-series data and consider that the causal structures are stable among different domains, and further raise the causal conditional shift assumption. Enlightened by this assumption, we consider the causal generation process for time-series data and devise an end-to-end model for transferable time-series forecasting. The proposed method can not only discover the cross-domain \textit{Granger Causality} but also address the cross-domain time-series forecasting problem. It can even provide the interpretability of the predicted results to some extent. We further theoretically analyze the superiority of the proposed methods, where the generalization error on the target domain is not only bounded by the empirical risks on the source and target domains but also by the similarity between the causal structures from different domains. Experimental results on both synthetic and real data demonstrate the effectiveness of the proposed method for transferable time-series forecasting.


翻译:本文侧重于时间序列预测的域适应问题,由于可变和复杂的有条件依赖性,这是一个容易忽略但具有挑战性的问题。事实上,这些特定领域的有条件依赖性主要由数据抵消、时间滞后和变量数据分布所主导。为了解决这一问题,我们分析了时间序列数据中附带条件的因果结构在不同领域之间保持稳定,并进一步提高了因果性有条件转换假设。根据这一假设,我们考虑了时间序列数据的因果生成过程,并设计了一个可转移时间序列预测的端到端模型。拟议方法不仅能够发现跨部的 extit{Granger Causality} 数据,而且能够解决跨部时间序列预测问题。我们甚至可以在一定程度上解释预测结果的可解释性。我们进一步从理论上分析了拟议方法的优越性,即目标领域的总体错误不仅受时间序列数据的可转让性风险约束,而且设计了一个可转移时间序列预测的端至端模型。拟议方法不仅可以发现跨部的 extitititititititititititit {Granger Cauvality},而且还可以从可展示不同领域和可转让性结果。

0
下载
关闭预览

相关内容

专知会员服务
24+阅读 · 2021年7月17日
专知会员服务
70+阅读 · 2021年3月27日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员