We study the entropic Gromov-Wasserstein and its unbalanced version between (unbalanced) Gaussian distributions with different dimensions. When the metric is the inner product, which we refer to as inner product Gromov-Wasserstein (IGW), we demonstrate that the optimal transportation plans of entropic IGW and its unbalanced variant are (unbalanced) Gaussian distributions. Via an application of von Neumann's trace inequality, we obtain closed-form expressions for the entropic IGW between these Gaussian distributions. Finally, we consider an entropic inner product Gromov-Wasserstein barycenter of multiple Gaussian distributions. We prove that the barycenter is Gaussian distribution when the entropic regularization parameter is small. We further derive closed-form expressions for the covariance matrix of the barycenter.
翻译:我们研究了Gromov-Wasserstein 及其不同维度的(不平衡的)Gaussian分布之间的偏移版本。当该指标是内产物时,我们称之为内产物Gromov-Wasserstein(IGW),我们证明,在(不平衡的)Gaussian分布条件下,该元素的最佳运输计划及其不平衡变量是(不平衡的)Gaussian分布。通过 von Neumann的微量不平等的应用,我们获得了在Gaussian的分布中,该元素的偏移IGW的封闭式表达方式。最后,我们考虑了多种高斯分布中的一种内产物Gromov-Wasserstein barycenter。我们证明,当昆虫正规化参数很小时,该中位器是高斯的分布。我们进一步得出了巴氏中心常态矩阵的封闭式表达方式。