Fuzzy structures such as fuzzy automata, fuzzy transition systems, weighted social networks and fuzzy interpretations in fuzzy description logics have been widely studied. For such structures, bisimulation is a natural notion for characterizing indiscernibility between states or individuals. There are two kinds of bisimulations for fuzzy structures: crisp bisimulations and fuzzy bisimulations. While the latter fits to the fuzzy paradigm, the former has also attracted attention due to the application of crisp equivalence relations, for example, in minimizing structures. Bisimulations can be formulated for fuzzy labeled graphs and then adapted to other fuzzy structures. In this article, we present an efficient algorithm for computing the partition corresponding to the largest crisp bisimulation of a given finite fuzzy labeled graph. Its complexity is of order $O((m\log{l} + n)\log{n})$, where $n$, $m$ and $l$ are the number of vertices, the number of nonzero edges and the number of different fuzzy degrees of edges of the input graph, respectively. We also study a similar problem for the setting with counting successors, which corresponds to the case with qualified number restrictions in description logics and graded modalities in modal logics. In particular, we provide an efficient algorithm with the complexity $O((m\log{m} + n)\log{n})$ for the considered problem in that setting.


翻译:模糊结构, 如 fuzzy automata 、 fuzzy 过渡系统 { 模糊的社会网络 、 模糊描述逻辑中的模糊解释 已经广泛研究过 。 对于这些结构, 闪烁是一个自然的概念, 用来描述国家或个人之间无法分辨的特性。 有两种模糊结构的模糊结构 : 细微闪烁和 fuzzy 刺激。 虽然后者符合模糊模式, 前者也引起了注意, 因为在最小化结构中应用( crips 等值关系 { 、 加权社会网络 和 模糊解释 。 对于模糊描述的逻辑 。 对于这些结构, 可以为 fuzzy 定义的模糊图解, 我们用一种有效的算法来计算分区 。 它的复杂程度是 $O (m\ log { + n) log} { n} $, 其中考虑的是 $n, $m} 和 $l$ 来最小的等值关系 。 。 模拟可以为 模糊的图表 、 非 边框数 和 匹配的缩缩缩缩缩 。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
42+阅读 · 2020年12月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月30日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员