Visual localization is an essential modern technology for robotics and computer vision. Popular approaches for solving this task are image-based methods. Nowadays, these methods have low accuracy and a long training time. The reasons are the lack of rigid-body and projective geometry awareness, landmark symmetry, and homogeneous error assumption. We propose a heterogeneous loss function based on concentrated Gaussian distribution with the Lie group to overcome these difficulties. Following our experiment, the proposed method allows us to speed up the training process significantly (from 300 to 10 epochs) with acceptable error values.
翻译:视觉定位是机器人和计算机视觉的基本现代技术。 解决这一任务的流行方法是图像法。 如今,这些方法的准确性低,培训时间长。 原因是缺乏僵硬体和投影几何意识、里程碑式的对称和一致的误差假设。 我们建议基于高山与利伊集团集中分布的不同损失函数,以克服这些困难。 在我们进行了实验之后,提议的方法使我们能够以可接受的误差值大大加快培训过程(从300到10个时代 ) 。