We present fast, realistic image generation on high-resolution, multimodal datasets using hierarchical variational autoencoders (VAEs) trained on a deterministic autoencoder's latent space. In this two-stage setup, the autoencoder compresses the image into its semantic features, which are then modeled with a deep VAE. With this method, the VAE avoids modeling the fine-grained details that constitute the majority of the image's code length, allowing it to focus on learning its structural components. We demonstrate the effectiveness of our two-stage approach, achieving a FID of 9.34 on the ImageNet-256 dataset which is comparable to BigGAN. We make our implementation available online.


翻译:本文提出使用分层变分自编码器(VAEs)基于确定性自编码器的潜空间训练,实现快速、逼真的高分辨率、多模态数据集图像生成。在这个两阶段的设置中,自编码器将图像压缩成其语义特征,然后使用深度VAE对其进行建模。使用此方法,VAE避免了对构成图像代码长度大部分的细粒度细节的建模,使其能够集中学习结构组件。我们演示了我们的两阶段方法的有效性,在ImageNet-256数据集上实现了9.34的FID,可与BigGAN相媲美。我们将实现代码提供在线上。

0
下载
关闭预览

相关内容

【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
【ICIP2019教程-NVIDIA】图像到图像转换,附7份PPT下载
专知会员服务
54+阅读 · 2019年11月20日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
Arxiv
13+阅读 · 2018年4月6日
VIP会员
相关VIP内容
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
【ICIP2019教程-NVIDIA】图像到图像转换,附7份PPT下载
专知会员服务
54+阅读 · 2019年11月20日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员