Snapshot compressive imaging (SCI) aims to record three-dimensional signals via a two-dimensional camera. For the sake of building a fast and accurate SCI recovery algorithm, we incorporate the interpretability of model-based methods and the speed of learning-based ones and present a novel dense deep unfolding network (DUN) with 3D-CNN prior for SCI, where each phase is unrolled from an iteration of Half-Quadratic Splitting (HQS). To better exploit the spatial-temporal correlation among frames and address the problem of information loss between adjacent phases in existing DUNs, we propose to adopt the 3D-CNN prior in our proximal mapping module and develop a novel dense feature map (DFM) strategy, respectively. Besides, in order to promote network robustness, we further propose a dense feature map adaption (DFMA) module to allow inter-phase information to fuse adaptively. All the parameters are learned in an end-to-end fashion. Extensive experiments on simulation data and real data verify the superiority of our method. The source code is available at https://github.com/jianzhangcs/SCI3D.
翻译:光速压缩成像(SCI)的目的是通过二维摄像头记录三维信号。为了建立快速和准确的SCI恢复算法,我们建议采用基于模型的方法的可解释性和基于学习的方法的速率,并分别采用基于模型的方法的可解释性和基于学习的方法的速率,并推出一个新的密集深度的网络(DUN),在SCI之前使用3D-CNN 3D-CNN 3D- 3D- CNN 。在SCI 之前,每个阶段都从半二次半二次分离的迭代中解开来。为了更好地利用各框架之间的空间-时际关系并解决现有 DUN 中相邻阶段的信息损失问题,我们建议先采用3D- CNN 3 CNN 的模拟数据和真实数据验证我们方法的优越性。此外,为了提高网络的稳健性,我们进一步提议一个密集的地貌图调控模模块,使跨阶段信息能够受控。所有参数都是以端到端方式学习的。关于模拟数据的广泛实验和真实数据验证我们方法的优劣性。源代码可在 http://girub.s.s.sian.