We develop a post-selective Bayesian framework to jointly and consistently estimate parameters within automatic group-sparse regression models. Selected through an indispensable class of learning algorithms, e.g. the Group LASSO, the overlapping Group LASSO, the sparse Group LASSO etc., uncertainty estimates for the matched parameters are unreliable in the absence of adjustments for selection bias. Limiting however the application of state of the art tools for the group-sparse problem include estimation strictly tailored to (i) real-valued projections onto very specific selected subspaces, (ii) selection events admitting representations as linear inequalities in the data variables. Our Bayesian methods address these gaps by deriving an adjustment factor in an easily feasible analytic form that eliminates bias from the selection of promising groups. Paying a very nominal price for this adjustment, experiments on simulated data and the Human Connectome Project demonstrate the efficacy of our methods at a joint estimation of group-sparse parameters learned from data.


翻译:我们制定了一个后选择性贝叶斯框架,以在自动群体分析回归模型中联合一致地估计参数。通过一个不可或缺的学习算法类别,例如,LASSO集团、重叠的LASSO集团、稀疏的LASSO集团等,选定出一个框架,在没有对选择偏差进行调整的情况下,对匹配参数的不确定性估计是不可靠的。然而,限制对群体偏差问题采用最新工具,包括严格根据以下因素进行估算:(一) 对非常具体的选定子空间进行实际估价预测,(二) 选择活动承认数据变量中的表述为线性不平等。我们的巴伊西亚方法解决了这些差距,以一种容易可行的分析形式得出调整系数,消除了选择有前途群体时的偏差。为这一调整支付非常象征性的价格,对模拟数据进行实验,以及人类连接项目,在联合估计从数据中得出的群体偏差参数时展示了我们方法的有效性。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月13日
Arxiv
0+阅读 · 2021年9月11日
Arxiv
0+阅读 · 2021年9月11日
Arxiv
0+阅读 · 2021年9月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员