Along with the rapid development of real-world applications, higher requirements on the accuracy and efficiency of image super-resolution (SR) are brought forward. Though existing methods have achieved remarkable success, the majority of them demand plenty of computational resources and large amount of RAM, and thus they can not be well applied to mobile device. In this paper, we aim at designing efficient architecture for 8-bit quantization and deploy it on mobile device. First, we conduct an experiment about meta-node latency by decomposing lightweight SR architectures, which determines the portable operations we can utilize. Then, we dig deeper into what kind of architecture is beneficial to 8-bit quantization and propose anchor-based plain net (ABPN). Finally, we adopt quantization-aware training strategy to further boost the performance. Our model can outperform 8-bit quantized FSRCNN by nearly 2dB in terms of PSNR, while satisfying realistic needs at the same time. Code is avaliable at https://github.com/NJU- Jet/SR_Mobile_Quantization.


翻译:在现实世界应用的迅速发展的同时,对图像超分辨率(SR)的准确性和效率提出了更高的要求,尽管现有方法取得了显著的成功,但大多数方法都要求大量的计算资源和大量的内存,因此无法很好地应用于移动设备。在本文中,我们的目标是设计8位位数的高效结构,并将其安装在移动设备上。首先,我们通过分解轻量的SR结构,对超分辨率进行元值的试验,这种结构决定着我们可以利用的便携式操作。然后,我们更深入地探索何种结构有利于8位数的量化,并提出基于锚的平原网(ABPN)。最后,我们采取了四分法培训战略,以进一步提升性能。我们的模型在PSNR方面可以比8位数的FSRCN高出近2位位数,同时满足现实需要。代码在https://github.com/NJU-Jet/SR_Mobileuatization上是有效的。

0
下载
关闭预览

相关内容

图像超分辨率(SR)是提高图像分辨率的一类重要的图像处理技术以及计算机视觉中的视频。
【CVPR2021】探索图像超分辨率中的稀疏性以实现高效推理
Google-EfficientNet v2来了!更快,更小,更强!
专知会员服务
18+阅读 · 2021年4月4日
专知会员服务
109+阅读 · 2020年3月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Arxiv
7+阅读 · 2020年3月1日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
3+阅读 · 2018年3月5日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员