With the race to build large-scale quantum computers and efforts to exploit quantum algorithms for efficient problem solving in science and engineering disciplines, the requirement to have efficient and scalable verification methods are of vital importance. We propose a novel formal verification method that is targeted at Quantum Fourier Transform (QFT) circuits. QFT is a fundamental quantum algorithm that forms the basis of many quantum computing applications. The verification method employs abstractions of quantum gates used in QFT that leads to a reduction of the verification problem from Hilbert space to the quantifier free logic of bit-vectors. Very efficient decision procedures are available to reason about bit-vectors. Therefore, our method is able to scale up to the verification of QFT circuits with 10,000 qubits and 50 million quantum gates, providing a meteoric advance in the size of QFT circuits thus far verified using formal verification methods.
翻译:建立大型量子计算机的竞赛,以及利用量子算法在科学和工程学科中有效解决问题的努力,要求采用高效和可扩展的核查方法至关重要。我们提出了针对量子Fourier变换(QFT)电路的新颖的正式核查方法。QFT是一种基本量子算法,它构成许多量子计算应用的基础。核查方法采用QFT所使用的量子门的抽取,从而将核查问题从Hilbert空间减少到比特消化器的量化自由逻辑。非常有效的决策程序可以用来解释比特消化器。因此,我们的方法能够扩大至对10 000平方位和5 000万个量子门的QFT电路的核查,从而提供了迄今为止使用正式核查方法核查的QFT电路大小的气象进步。