We present a new test when there is a nuisance parameter under the alternative hypothesis. The test exploits the p-value occupation time [PVOT], the measure of the nuisance parameter subset on which a p-value test based on a a test statistic rejects the null hypothesis. Key contributions are: (i) An asymptotic critical value upper bound for our test is the significance level {\alpha}, making inference easy. (ii) We only require the test statistic to have a known or bootstrappable limit distribution, hence we do not require root(n)-Gaussian asymptotics, allowing for weak or non-identification, boundary values, heavy tails, infill asymptotics, and so on. (iii) A test based on the sup-p-value may be conservative and in some cases have trivial power, while the PVOT naturally controls for this by smoothing over the nuisance parameter space. Finally, (iv) the PVOT uniquely allows for bootstrap inference in the presence of nuisance parameters when some estimated parameters may not be identified.
翻译:在替代假设下存在麻烦参数时,我们提出了一个新的测试。测试利用了p-value 占用时间[PVOT],即基于测试统计数字的p-value 参数子集的测量,根据测试统计数字对无效假设进行否定。关键贡献是:(一) 我们测试的无症状临界值上限是临界值,很容易推理。 (二) 我们只要求测试统计有一个已知或可靴子限制分布,因此我们不需要根(n)-Gausian 的杂质,允许弱或非识别、边界值、重尾巴、充充充充充等参数。 (三) 基于sup-p-value的测试可能比较保守,在某些情况下,其能量很小,而PVOT通过平滑扰动参数空间来对此进行自然控制。最后,(四) PVOT在无法确定某些估计参数时,特别允许在出现麻烦参数时出现靴带。