We develop an algorithm for sequential adaptation of a classifier that is trained for a source domain to generalize in an unannotated target domain. We consider that the model has been trained on the source domain annotated data and then it needs to be adapted using the target domain unannotated data when the source domain data is not accessible. We align the distributions of the source and the target domains in a discriminative embedding space via an intermediate internal distribution. This distribution is estimated using the source data representations in the embedding. We conduct experiments on four benchmarks to demonstrate the method is effective and compares favorably against existing methods.
翻译:我们为按顺序调整一个分类器开发了一种算法,该算法经过培训,源域可在未附加说明的目标域中推广。我们认为,该模型是在源域附加说明的数据方面受过培训的,然后在无法获取源域数据时,需要使用目标域无说明的数据加以调整。我们通过中间内部分布将源的分布情况和目标域在歧视性嵌入空间中的分布相匹配。这种分布是利用嵌入的源数据表示来估计的。我们用四个基准进行实验,以证明该方法有效,并且比现有方法要好得多。