Simultaneous Localisation and Mapping (SLAM) is one of the fundamental problems in autonomous mobile robots where a robot needs to reconstruct a previously unseen environment while simultaneously localising itself with respect to the map. In particular, Visual-SLAM uses various sensors from the mobile robot for collecting and sensing a representation of the map. Traditionally, geometric model-based techniques were used to tackle the SLAM problem, which tends to be error-prone under challenging environments. Recent advancements in computer vision, such as deep learning techniques, have provided a data-driven approach to tackle the Visual-SLAM problem. This review summarises recent advancements in the Visual-SLAM domain using various learning-based methods. We begin by providing a concise overview of the geometric model-based approaches, followed by technical reviews on the current paradigms in SLAM. Then, we present the various learning-based approaches to collecting sensory inputs from mobile robots and performing scene understanding. The current paradigms in deep-learning-based semantic understanding are discussed and placed under the context of Visual-SLAM. Finally, we discuss challenges and further opportunities in the direction of learning-based approaches in Visual-SLAM.
翻译:同步定位和绘图(SLAM)是自主移动机器人的根本问题之一,机器人需要重建一个先前不为人知的环境,同时对地图进行定位;特别是,SV-SLAM使用移动机器人的各种传感器收集和遥感地图的图象;传统上,以几何模型为基础的技术用来解决SLAM问题,在具有挑战性的环境中往往容易出错;计算机视觉的最近进步,如深层次学习技术,提供了一种数据驱动方法,以解决视觉-SLAM问题。本审查总结了视觉-SLAM领域最近利用各种学习方法取得的进展。我们首先简要概述了基于几何模型的方法,然后对SLM目前的模式进行了技术审查。然后,我们介绍了收集移动机器人的传感器投入和执行场面理解的各种基于学习的方法。目前基于深层学习的语义理解模式在视觉-SLAM的背景下进行了讨论和定位。最后,我们讨论了视觉-SLAM学习方法方向的挑战和进一步的机会。