Tracking all nuclei of an embryo in noisy and dense fluorescence microscopy data is a challenging task. We build upon a recent method for nuclei tracking that combines weakly-supervised learning from a small set of nuclei center point annotations with an integer linear program (ILP) for optimal cell lineage extraction. Our work specifically addresses the following challenging properties of C. elegans embryo recordings: (1) Many cell divisions as compared to benchmark recordings of other organisms, and (2) the presence of polar bodies that are easily mistaken as cell nuclei. To cope with (1), we devise and incorporate a learnt cell division detector. To cope with (2), we employ a learnt polar body detector. We further propose automated ILP weights tuning via a structured SVM, alleviating the need for tedious manual set-up of a respective grid search. Our method outperforms the previous leader of the cell tracking challenge on the Fluo-N3DH-CE embryo dataset. We report a further extensive quantitative evaluation on two more C. elegans datasets. We will make these datasets public to serve as an extended benchmark for future method development. Our results suggest considerable improvements yielded by our method, especially in terms of the correctness of division event detection and the number and length of fully correct track segments. Code: https://github.com/funkelab/linajea
翻译:以吵闹和密密密的荧光显微镜数据跟踪胚胎的所有核心,这是一项艰巨的任务。我们以最近的一种核心跟踪方法为基础,将一组微小核心点说明的微弱监督学习与一组精密细胞线条优化提取的整数线性程序(ILP)结合起来。我们的工作具体针对C. ELegans胚胎记录具有挑战性的以下特性:(1) 与其他生物的基准记录相比,许多细胞分解,以及(2) 极体的存在很容易被误认为细胞核。为了应对(1),我们设计并纳入一个学习过的细胞分解探测器。为了应对(2),我们使用一个学习过的极地体探测器。我们进一步建议通过结构化的SVM对ILP加权进行自动调整,从而减轻对各自网络搜索的老练手动设置的需求。我们的方法超越了跟踪CFluo-N3DH-CE胚胎数据集挑战的前领导。我们报告了对另外两个C. Elegans数据集的进一步广泛的定量评估。我们将这些数据设置这些极体探测器,作为我们未来分数的准确性分析方法。我们的数据分析结果。