Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special training approach for AdderNets by investigating the $\ell_p$-norm. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 75.7% Top-1 accuracy 92.3% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolutional layer. Moreover, we develop a theoretical foundation for AdderNets, by showing that both the single hidden layer AdderNet and the width-bounded deep AdderNet with ReLU activation functions are universal function approximators. These results match those of the traditional neural networks using the more complex multiplication units. An approximation bound for AdderNets with a single hidden layer is also presented.


翻译:与廉价的添加操作相比, 倍增操作的计算复杂性要高得多。 在 AdderNets 中, 深神经网络中广泛使用的变异是精确的交叉关系, 以测量输入特性和变异过滤器之间的相似性, 其中包括浮点值之间的大规模乘法。 在本文中, 我们推出添加网络( AdderNets), 将这些巨大的倍增在深神经网络中进行交易, 特别是变异神经网络( CNNs ), 以便以更便宜的方式增加计算成本。 在 AderNets 中, 我们使用过滤器和输入器的相交距离来计算输出响应。 已经彻底分析了这一新相似的输入特性特性和变异过滤器过滤器过滤器过滤器过滤器的相似性。 为了取得更好的业绩, 我们开发的 aderNets, 也可以在使用 $\ell_ pal_ p$- n- entral 中, 并使用 Excial- develop Exliversal 服务器来显示 Excial- ExliversalNet 。

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
Arxiv
0+阅读 · 2021年7月23日
Momentum Residual Neural Networks
Arxiv
0+阅读 · 2021年7月22日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
3+阅读 · 2018年10月25日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
10+阅读 · 2018年2月4日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
相关论文
Arxiv
0+阅读 · 2021年7月23日
Momentum Residual Neural Networks
Arxiv
0+阅读 · 2021年7月22日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
3+阅读 · 2018年10月25日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
10+阅读 · 2018年2月4日
Arxiv
7+阅读 · 2018年1月10日
Top
微信扫码咨询专知VIP会员