We introduce the LOv-calculus, a graphical language for reasoning about linear optical quantum circuits with so-called vacuum state auxiliary inputs. We present the axiomatics of the language and prove its soundness and completeness: two LOv-circuits represent the same quantum process if and only if one can be transformed into the other with the rules of the LOv-calculus. We give a confluent and terminating rewrite system to rewrite any polarisation-preserving LOv-circuit into a unique triangular normal form, inspired by the universal decomposition of Reck et al. (1994) for linear optical quantum circuits.
翻译:我们引入了Lov-calulus(Lov-calulus),这是用所谓的真空状态辅助输入来推理线性光学量子电路的图形语言。我们展示了该语言的惯性,并证明了其健全性和完整性:两个Lov-电路代表了相同的量子过程,如果并且只有能够按照Lov-calulus的规则将两者转换成另一个过程。我们给出了一个调整和终止重写系统,将任何对极化-保护Lov-con-lor-lance 重写成一种独特的三角正常形式,受Reck等人(1994年)对线性光学量子电路的普遍分解的影响。