In this paper we present a large dataset with a variety of mobile mapping sensors collected using a handheld device carried at typical walking speeds for nearly 2.2 km through New College, Oxford. The dataset includes data from two commercially available devices - a stereoscopic-inertial camera and a multi-beam 3D LiDAR, which also provides inertial measurements. Additionally, we used a tripod-mounted survey grade LiDAR scanner to capture a detailed millimeter-accurate 3D map of the test location (containing $\sim$290 million points). Using the map we inferred centimeter-accurate 6 Degree of Freedom (DoF) ground truth for the position of the device for each LiDAR scan to enable better evaluation of LiDAR and vision localisation, mapping and reconstruction systems. This ground truth is the particular novel contribution of this dataset and we believe that it will enable systematic evaluation which many similar datasets have lacked. The dataset combines both built environments, open spaces and vegetated areas so as to test localization and mapping systems such as vision-based navigation, visual and LiDAR SLAM, 3D LIDAR reconstruction and appearance-based place recognition. The dataset is available at: ori.ox.ac.uk/datasets/newer-college-dataset
翻译:在本文中,我们展示了一个庞大的数据集,该数据集使用在牛津州新学院近2.2公里处以典型步行速度携带的手持设备收集了近2.2公里的移动绘图传感器,该数据集包括两个商业可用设备的数据 -- -- 立体-肾上腺照相机和多波束3DLIDAR,它们也提供惯性测量。此外,我们使用一个三脚架调查级LIDAR扫描仪,以捕捉一个详细的试验地点三维精确度3D地图(含2.9亿美元点),利用该地图,我们推断出六度自由(DoF)的厘米-精确度六度(Centiter-crocurate 6) 地面真相,用于每个LIDAR扫描设备的位置,以便能够更好地评估LIDAR和视觉定位、绘图和重建系统。这一地面真理是该数据集的特别新贡献,我们认为它将促成许多类似数据集所缺乏的系统评估。数据集结合了建筑环境、开放空间和植被区,从而测试定位和绘图系统系统系统,例如基于视觉导航、视觉和DAR-ADDDDDDA数据库的重建或最新数据。