Due to the computational cost of running inference for a neural network, the need to deploy the inferential steps on a third party's compute environment or hardware is common. If the third party is not fully trusted, it is desirable to obfuscate the nature of the inputs and outputs, so that the third party can not easily determine what specific task is being performed. Provably secure protocols for leveraging an untrusted party exist but are too computational demanding to run in practice. We instead explore a different strategy of fast, heuristic security that we call Connectionist Symbolic Pseudo Secrets. By leveraging Holographic Reduced Representations (HRR), we create a neural network with a pseudo-encryption style defense that empirically shows robustness to attack, even under threat models that unrealistically favor the adversary.
翻译:由于神经网络运行推论的计算成本,在第三方的计算环境或硬件上部署推论步骤的必要性是常见的。 如果第三方不完全信任,那么可取的做法是混淆投入和产出的性质,这样第三方无法轻易地确定正在完成哪些具体任务。 可以利用不受信任的一方的可靠协议存在,但在计算上要求过高,无法实际操作。 相反,我们探索了一种不同的快速、超常安全战略,我们称之为“连接主义者符号化化化秘密 ” 。 我们通过利用全方位减少代表(HRR),创建了带有伪催眠风格防御的神经网络,这种防御在经验上显示攻击的强大性,即使在不现实地有利于对手的威胁模式下也是如此。