Finding the shortest path between two points in a graph is a fundamental problem that has been well-studied over the past several decades. Shortest path algorithms are commonly applied to modern navigation systems, so our study aims to improve the efficiency of an existing algorithm on large-scale Euclidean networks. The current literature lacks a deep understanding of certain algorithms' performance on these types of networks. Therefore, we incorporate a new heuristic function, called the $k$-step look-ahead, into the A* search algorithm and conduct a computational experiment to evaluate and compare the results on road networks of varying sizes. Our main findings are that this new heuristic yields a significant improvement in runtime, particularly for larger networks when compared to standard A*, as well as that a higher value of $k$ is needed to achieve optimal efficiency as network size increases. Future research can build upon this work by implementing a program that automatically chooses an optimal $k$ value given an input network. The results of this study can be applied to GPS routing technologies or other navigation devices to speed up the time needed to find the shortest path from an origin to a destination, an essential objective in daily life.
翻译:在图表中找到两个点之间的最短路径是一个基本问题,在过去几十年中已经很好地研究过这个问题。最短路径算法通常适用于现代导航系统,因此我们的研究目的是提高大规模欧几里德网络现有算法的效率。目前的文献缺乏对某些算法在这类网络上的效能的深刻了解。因此,我们把称为美元分步看头的新的休斯主义功能纳入A* 搜索算法,并进行计算实验,以评估和比较不同大小的公路网络的结果。我们的主要发现是,这种新的超速算法在运行时产生了显著的改进,特别是在与标准A* 相比较大的网络,以及随着网络规模的扩大,需要更高价值的美元来实现最佳效率。未来研究可以通过实施一个程序,即自动选择给一个输入网络以美元值为单位的最佳值。这项研究的结果可以应用于定位定位路径技术或其他导航装置,以加快从起点到目的地的最短的路段所需的时间,即日常生活中的基本目标。