This paper considers the simultaneous position and orientation planning of nonholonomic multirobot systems. Different from common researches which only focus on final position constraints, we model the nonholonomic mobile robot as a rigid body and introduce the orientation as well as position constraints for the robot's final states. In other words, robots should not only reach the specified positions, but also point to the desired orientations simultaneously. The challenge of this problem lies in the underactuation of full-state motion planning, since three states need to be planned by mere two control inputs. To this end, we propose a dynamic vector field (DVF) based on the rigid body modeling. Specifically, the dynamics of the robot orientation are brought into the vector field, implying that the vector field is not static on the 2-D plane anymore, but a dynamic one varying with the attitude angle. Hence, each robot can move along the integral curve of the DVF to arrive at the desired position, and in the meantime, the attitude angle can converge to the specified value following the orientation dynamics. Subsequently, by designing a circular vector field under the framework of the DVF, we further study the obstacle avoidance and mutual-robot-collision avoidance in the motion planning. Finally, numerical simulation examples are provided to verify the effectiveness of the proposed methodology.
翻译:本文审视了非holonomic 多元机器人系统的同步位置和方向规划。 不同于仅侧重于最终位置限制的常见研究, 我们将非holonomic移动机器人作为僵硬体进行模拟, 并引入机器人最终状态的定向和位置限制。 换句话说, 机器人不仅应该达到指定位置, 而且应该同时指向理想方向。 这一问题的挑战在于全状态运动规划的激活不足, 因为三个州需要仅仅用两个控制输入来规划。 为此, 我们提议基于僵硬体型体建模的动态矢量场( DVF) 。 具体地说, 机器人方向的动态被引入矢量场, 意味着矢量场不再在2- D 平面上静止, 而是一个与姿态角度不同的动态。 因此, 每个机器人可以沿着DVF 整体曲线的综合曲线前进到理想位置, 同时, 态度角度可以与指定的方向动态相交汇。 随后, 我们通过在 DVF 模型框架下设计一个循环矢量矢量场域场域域域域域域, 我们进一步校准了最终的模拟方法 。