Hotelling's $T^2$ test is a classical approach for discriminating the means of two multivariate normal samples that share a population covariance matrix. Hotelling's test is not ideal for high-dimensional samples because the eigenvalues of the estimated sample covariance matrix are inconsistent estimators for their population counterparts. We replace the sample covariance matrix with the nonlinear shrinkage estimator of Ledoit and Wolf 2020. We observe empirically for sub-Gaussian data that the resulting algorithm dominates past methods (Bai and Saranadasa 1996, Chen and Qin 2010, and Li et al. 2020) for a family of population covariance matrices that includes matrices with high or low condition number and many or few nontrivial -- i.e., spiked -- eigenvalues.
翻译:酒店的$T$2美元测试是一种典型的方法,用于区别两种多变正常样本,这些样本共用一个人口共变矩阵。酒店的测试对于高维样本并不理想,因为估计样本共变矩阵的均值是其人口对应方的不一致估计值。我们用Ledoit 和 Wolf 2020的非线性收缩估测器取代样本共变矩阵。我们从经验上观察了子Gausian数据,即由此产生的算法在以往方法中占主导地位(Bai和Saranadasa,1996年;Chen和Qin,2010年;以及Li等人,2020年),对于包含高或低状态数矩阵和许多或少数非三维矩阵 -- -- 即加压 -- egenvaluvals -- -- 即机重值。