Implicit-Explicit (IMEX) methods are flexible numerical time integration methods which solve an initial-value problem (IVP) that is partitioned into stiff and nonstiff processes with the goal of lower computational costs than a purely implicit or explicit approach. A complementary form of flexible IVP solvers are multirate infinitesimal methods for problems partitioned into fast- and slow-changing dynamics, that solve a multirate IVP by evolving a sequence of ``fast'' IVPs using any suitably accurate algorithm. This article introduces a new class of high-order implicit-explicit multirate methods that are designed for multirate IVPs in which the slow-changing dynamics are further partitioned in an IMEX fashion. This new class, which we call implicit-explicit multirate stage-restart (IMEX-MRI-SR), both improves upon the previous implicit-explicit multirate generalized-structure additive Runge Kutta (IMEX-MRI-GARK) methods, and extends multirate exponential Runge Kutta (MERK) methods into the IMEX context. We leverage GARK theory to derive conditions guaranteeing orders of accuracy up to four. We provide second-, third-, and fourth-order accurate example methods and perform numerical simulations demonstrating convergence rates and computational performance in both fixed-step and adaptive-step settings.
翻译:隐含的(IMEX)方法是灵活的数字时间整合方法,解决初始价值问题(IVP),分为僵硬和非僵硬的流程,目的是降低计算成本,而不是纯粹的隐含或明确的方法。灵活的IVP解答器是一种补充形式,是将问题分为快速和缓慢变化动态的多元无限方法,通过使用任何适当准确的算法来发展“Fast' IVP”序列,解决多比率的IVP。本文章引入了一种新的高等级的隐含解释性多比率方法,为多等级的IVP设计,缓慢变化动态以IMEX方式进一步分割。我们称之为隐含的多阶段启动(IMEX-MRI-SR)的新类别,这两类方法都改进了以前隐含的多端通用结构添加剂Runge Kutta(IMEX-MRI-GARK)方法的序列,并将多级指数性变异(MERK)方法扩展到了第三次IMEX环境。我们利用GARK理论来得出保证精确性能序列的准确性能调整和四级模型。