Time-evolving large graph has received attention due to their participation in real-world applications such as social networks and PageRank calculation. It is necessary to partition a large-scale dynamic graph in a streaming manner to overcome the memory bottleneck while partitioning the computational load. Reducing network communication and balancing the load between the partitions are the criteria to achieve effective run-time performance in graph partitioning. Moreover, an optimal resource allocation is needed to utilise the resources while catering the graph streams into the partitions. A number of existing partitioning algorithms (ADP, LogGP and LEOPARD) have been proposed to address the above problem. However, these partitioning methods are incapable of scaling the resources and handling the stream of data in real-time. In this study, we propose a dynamic graph partitioning method called Scalable Dynamic Graph Partitioner (SDP) using the streaming partitioning technique. The SDP contributes a novel vertex assigning method, communication-aware balancing method, and a scaling technique to produce an efficient dynamic graph partitioner. Experiment results show that the proposed method achieves up to 90% reduction of communication cost and 60%-70% balancing the load dynamically, compared with previous algorithms. Moreover, the proposed algorithm significantly reduces the execution time during partitioning.


翻译:时间变化的大图表因其参与社交网络和PageRank计算等真实世界应用而得到关注。 有必要以流态方式分割大型动态图形以克服内存瓶颈, 并同时分割计算负荷 。 减少网络通信和平衡分区之间的负载是实现在图形分区中有效运行时间性能的标准。 此外, 需要优化资源分配来利用资源, 同时将图形流连接到分区中。 为了解决上述问题, 已经提议了一些现有的分区算法( DP、 LogGP 和 LEOPARD ) 。 但是, 这些分割方法无法在实时分割时缩小资源和处理数据流。 在此研究中, 我们提议了一个动态图形分割法, 名为 Scallable 动态图形分割器( SDP ) 。 SDP 有助于一种新型的垂直分配方法、 通信认知平衡法以及 生成高效的动态图形分割法 。 实验结果显示, 拟议的方法可以达到资源缩放幅度, 和实时处理数据流流流流流流数据流流流流。 在前的递算法中, 大大压缩了60% 。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【泡泡一分钟】一种实用且高效的多视图匹配方法
泡泡机器人SLAM
6+阅读 · 2018年11月19日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【泡泡一分钟】一种实用且高效的多视图匹配方法
泡泡机器人SLAM
6+阅读 · 2018年11月19日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员