We connect learning algorithms and algorithms automating proof search in propositional proof systems: for every sufficiently strong, well-behaved propositional proof system $P$, we prove that the following statements are equivalent, 1. Provable learning: $P$ proves efficiently that p-size circuits are learnable by subexponential-size circuits over the uniform distribution with membership queries. 2. Provable automatability: $P$ proves efficiently that $P$ is automatable by non-uniform circuits on propositional formulas expressing p-size circuit lower bounds. Here, $P$ is sufficiently strong and well-behaved if I.-III. holds: I. $P$ p-simulates Je\v{r}\'abek's system $WF$ (which strengthens the Extended Frege system $EF$ by a surjective weak pigeonhole principle); II. $P$ satisfies some basic properties of standard proof systems which p-simulate $WF$; III. $P$ proves efficiently for some Boolean function $h$ that $h$ is hard on average for circuits of subexponential size. For example, if III. holds for $P=WF$, then Items 1 and 2 are equivalent for $P=WF$. If there is a function $h\in NE\cap coNE$ which is hard on average for circuits of size $2^{n/4}$, for each sufficiently big $n$, then there is an explicit propositional proof system $P$ satisfying properties I.-III., i.e. the equivalence of Items 1 and 2 holds for $P$.


翻译:我们把学习算法和算法连接起来,在标本证明系统中自动进行校对:对于每一个足够强大、良好、有条理的标本证明系统来说,我们证明以下声明是等效的,1美元。 可证实的学习:美元能有效地证明,在统一分布上,小电路的大小的电路可以通过成员问询来学习。 2. 可证实的自动兼容性:美元能有效地证明,美元能通过标本显示小电路下界的非统一电路的非统一电路进行自动分析。在这里,美元能足够强大,如果I.-III持有以下的报表:I.P.

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
68+阅读 · 2020年10月24日
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
90+阅读 · 2020年10月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员