Physical layer secret key generation exploits the reciprocal channel randomness for key generation and has proven to be an effective addition security layer in wireless communications. However, static or scarcely random channels require artificially induced dynamics to improve the secrecy performance, e.g., using intelligent reflecting surface (IRS). One key challenge is that the induced random phase from IRS is also reflected in the direction to eavesdroppers (Eve). This leakage enables Eve nodes to estimate the legitimate channels and secret key via a globally known pilot sequence. To mitigate the secret key leakage issue, we propose to exploit random matrix theory to inform the design of a new physical layer secret key generation (PL-SKG) algorithm. We prove that, when sending appropriate random Gaussian matrices, the singular values of Alice's and Bob's received signals follow a similar probability distribution. Leveraging these common singular values, we propose a random Gaussian matrix based PL-SKG (RGM PL-SKG), which avoids the usages of the globally known pilot and thereby prevents the aforementioned leakage issue. Our results show the following: (i) high noise resistance which leads to superior secret key rate (SKR) improvement (up to 300%) in low SNR regime, and (ii) general improved SKR performance against multiple colluded Eves. We believe our combination of random matrix theory and PL-SKG shows a new paradigm to secure the wireless communication channels.
翻译:物理层秘密钥匙生成利用了关键生成的对等通道随机性,并被证明是无线通信中一个有效的额外安全层。然而,静态或很少随机的频道需要人工驱动的动态来改进保密性能,例如使用智能反射表面(IRS) 。一个关键的挑战是,IRS的随机随机阶段也反映在访问者(Eve)的方向上。这种渗漏使得Eve节点能够通过一个全球已知的试点序列来估计合法通道和秘密密钥。为了减少秘密关键渗漏问题,我们提议利用随机矩阵理论来为设计一个新的物理层秘密关键生成(PL-SKG)算法提供信息。我们证明,在发送适当的随机高频矩阵时,Alices和Bobs接收的奇特值的奇特值也随类似概率分布而变化。我们用这些共同的奇特值,我们建议随机高频矩阵以PL-SK(RPL-S)为基础,避免使用全球已知的无线试点,从而防止上述渗漏问题。我们的结果显示,在发送适当的高频-RS(i-R)高频级S)的甚级理论中,我们对高频级的超超超超级的甚级的甚级循环将显示S-R)的甚高频级的甚高频级系统。