The Asymmetric Numeral Systems (ANS) is a class of entropy encoders by Duda that had an immense impact on the data compression, substituting arithmetic and Huffman coding. The optimality of ANS was studied by Duda et al. but the precise asymptotic behaviour of its redundancy (in comparison to the entropy) was not completely understood. In this paper we establish an optimal bound on the redundancy for the tabled ANS (tANS), the most popular ANS variant. Given a sequence $a_1,\ldots,a_n$ of letters from an alphabet $\{0,\ldots,\sigma-1\}$ such that each letter $a$ occurs in it $f_a$ times and $n=2^r$, the tANS encoder using Duda's ``precise initialization'' to fill tANS tables transforms this sequence into a bit string of length (frequencies are not included in the encoding size): $$ \sum\limits_{a\in [0..\sigma)}f_a\cdot\log\frac{n}{f_a}+O(\sigma+r), $$ where $O(\sigma + r)$ can be bounded by $\sigma\log e+r$. The $r$-bit term is an encoder artifact indispensable to ANS; the rest incurs a redundancy of $O(\frac{\sigma}{n})$ bits per letter. We complement this bound by a series of examples showing that an $\Omega(\sigma+r)$ redundancy is necessary when $\sigma > n/3$, where $\Omega(\sigma + r)$ is at least $\frac{\sigma-1}{4}+r-2$. We argue that similar examples exist for any methods that distribute letters in tANS tables using only the knowledge about frequencies. Thus, we refute Duda's conjecture that the redundancy is $O(\frac{\sigma}{n^2})$ bits per letter. We also propose a new variant of range ANS (rANS), called rANS with fixed accuracy, that is parameterized by $k \ge 1$. In this variant the integer division, which is unavoidable in rANS, is performed only in cases when its result belongs to $[2^k..2^{k+1})$. Hence, the division can be computed by faster methods provided $k$ is small. We bound the redundancy for the rANS with fixed accuracy $k$ by $\frac{n}{2^k-1}\log e+r$.


翻译:Ansymology Numeral Systems( ANS2) 是一个由 Duda 提供的对数据压缩、替换算术和 Huffman 编码产生巨大影响的精度级 。 Duda 等人研究了 ANS 的最佳性, 但对于其冗余( 与 entropy 相比) 的精确无损性行为 。 在本文中, 我们只能为已推出的 ANS (tANS) 的冗余设定一个最佳约束 。 由于一个序列 $_ 1,\ ldots, an$_ syrefredition, a mode$0,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 美元, lifers a fres a fres a fentr.

0
下载
关闭预览

相关内容

【数据科学导论书】Introduction to Datascience,253页pdf
专知会员服务
50+阅读 · 2021年11月15日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Python图像处理,366页pdf,Image Operators Image Processing in Python
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
156+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
180+阅读 · 2019年10月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
1+阅读 · 2022年4月18日
Prefix-Free Coding for LQG Control
Arxiv
0+阅读 · 2022年4月15日
Warped Dynamic Linear Models for Time Series of Counts
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员