Let $S$ be a set of $n$ points in general position in the plane. The Second Selection Lemma states that for any family of $\Theta(n^3)$ triangles spanned by $S$, there exists a point of the plane that lies in a constant fraction of them. For families of $\Theta(n^{3-\alpha})$ triangles, with $0\le \alpha \le 1$, there might not be a point in more than $\Theta(n^{3-2\alpha})$ of those triangles. An empty triangle of $S$ is a triangle spanned by $S$ not containing any point of $S$ in its interior. B\'ar\'any conjectured that there exist an edge spanned by $S$ that is incident to a super constant number of empty triangles of $S$. The number of empty triangles of $S$ might be $O(n^2)$; in such a case, on average, every edge spanned by $S$ is incident to a constant number of empty triangles. The conjecture of B\'ar\'any suggests that for the class of empty triangles the above upper bound might not hold. In this paper we show that, somewhat surprisingly, the above upper bound does in fact hold for empty triangles. Specifically, we show that for any integer $n$ and real number $0\leq \alpha \leq 1$ there exists a point set of size $n$ with $\Theta(n^{3-\alpha})$ empty triangles such that any point of the plane is only in $O(n^{3-2\alpha})$ empty triangles.
翻译:以美元计值。 第二选择 Lemma 表示, 对于以美元计值的家族来说, $\ Theta( n3) 3美元三角形以美元为美元, 平面有一个点, 位于其中的固定部分。 对于以美元计值的三角形, $0\le\ 3- ALpha\ le 1 美元, 这些三角形的空三角形数可能不会超过 $( $) (n_ 3\ 2\ ALpha}) 。 美元为美元的空三角形是一个三角形, 以美元计值计算, 内部不包含任何美元值的三角形。 B\\ ar\ “ 任何猜想, 平面有以美元计值为美元, 美元为超常数的空三角形数。 美元数的空三角形数可能为 O( n2) ; 在这样的情况下, 美元的平均边距值是 $0 。 在直方形上方形的某处, 显示我们所持的平面的直径框框框 。