An approximation algorithm for a constraint satisfaction problem is called robust if it outputs an assignment satisfying a $(1 - f(\epsilon))$-fraction of the constraints on any $(1-\epsilon)$-satisfiable instance, where the loss function $f$ is such that $f(\epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$. Moreover, the runtime of a robust algorithm should not depend in any way on $\epsilon$. In this paper, we present such an algorithm for Min-Unique-Games on complete graphs with $q$ labels. Specifically, the loss function is $f(\epsilon) = (\epsilon + c_{\epsilon} \epsilon^2)$, where $c_{\epsilon}$ is a constant depending on $\epsilon$ such that $\lim_{\epsilon \rightarrow 0} c_{\epsilon} = 16$. The runtime of our algorithm is $O(qn^3)$ (with no dependence on $\epsilon$) and can run in time $O(qn^2)$ using a randomized implementation with a slightly larger constant $c_{\epsilon}$. Our algorithm is combinatorial and uses voting to find an assignment. It can furthermore be used to provide a PTAS for Min-Unique-Games on complete graphs, recovering a result of Karpinski and Schudy with a simpler algorithm and proof. We also prove NP-hardness for Min-Unique-Games on complete graphs and (using a randomized reduction) even in the case where the constraints form a cyclic permutation, which is also known as Min-Linear-Equations-mod-$q$ on complete graphs.


翻译:约束性满意度问题的近似算法称为稳健。 此外, 稳健算法的运行时间不应以任何方式取决于 $\ epsilon 。 在本文中, 我们用$qual 标签在完整图表上为 Min- Unique- Games 提供这样的算法。 具体地说, 损失函数是$f(\\\ epsilon) $f(\\ epsilon) 美元, 损失函数是$f(\ epsilon) = 美元 rightal 0. 美元。 损失函数是 $f( \ epsilon) = $( f) $( f) 美元( f) 美元( eq_ epsilon- games ) 。 使用 $( legrentral- ral- ral- ral- ral- ral- ) = 16 美元( levelop leg) $( leg) levelop ral- ral- ral- ral- ral- sal- sal- sal- lex) ral- salx) exlational- sal- ex) ex) exlation exx exxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
75+阅读 · 2021年3月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月2日
Arxiv
0+阅读 · 2022年12月29日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员