We show that aggregated model updates in federated learning may be insecure. An untrusted central server may disaggregate user updates from sums of updates across participants given repeated observations, enabling the server to recover privileged information about individual users' private training data via traditional gradient inference attacks. Our method revolves around reconstructing participant information (e.g: which rounds of training users participated in) from aggregated model updates by leveraging summary information from device analytics commonly used to monitor, debug, and manage federated learning systems. Our attack is parallelizable and we successfully disaggregate user updates on settings with up to thousands of participants. We quantitatively and qualitatively demonstrate significant improvements in the capability of various inference attacks on the disaggregated updates. Our attack enables the attribution of learned properties to individual users, violating anonymity, and shows that a determined central server may undermine the secure aggregation protocol to break individual users' data privacy in federated learning.
翻译:我们发现,在联合学习中,综合模型更新可能是不安全的。 一个不信任的中央服务器可以对用户更新进行分类,对参与者进行反复观察,对用户更新进行分类,使服务器能够通过传统的梯度推断攻击恢复个人用户私人培训数据的保密信息。我们的方法是利用通常用于监测、调试和管理联合学习系统的设备分析器的汇总信息,从综合模型更新中重建参与者信息(例如:哪些培训用户参与),对参与者进行分类。我们的攻击是平行的,我们成功地对多达数千参与者的设置的用户更新进行了分类。我们在定量和定性上表明,对分类更新进行的各种推断攻击的能力有了显著提高。我们的攻击使得学到的特性可以归属给个人用户,违反了匿名性,并表明一个确定的中央服务器可能会破坏安全汇总协议,从而在联合学习中打破个人用户的数据隐私。