Federated learning is vulnerable to various attacks, such as model poisoning and backdoor attacks, even if some existing defense strategies are used. To address this challenge, we propose an attack-adaptive aggregation strategy to defend against various attacks for robust federated learning. The proposed approach is based on training a neural network with an attention mechanism that learns the vulnerability of federated learning models from a set of plausible attacks. To the best of our knowledge, our aggregation strategy is the first one that can be adapted to defend against various attacks in a data-driven fashion. Our approach has achieved competitive performance in defending model poisoning and backdoor attacks in federated learning tasks on image and text datasets.


翻译:联邦学习很容易受到各种攻击,例如示范性中毒和后门攻击,即使使用了一些现有的防御战略。为了应对这一挑战,我们建议采取进攻性适应性综合战略,防范各种攻击,以进行有力的联邦学习。拟议方法的基础是培训神经网络,其关注机制从一系列可信的攻击中了解联合会学习模式的脆弱性。据我们所知,我们的合并战略是第一个能够适应以数据驱动的方式防御各种攻击的战略。我们的方法在保护模型中毒和后门攻击方面取得了竞争性业绩,在图像和文本数据集方面,联合学习任务中,联合学习了类似的任务。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
专知会员服务
112+阅读 · 2020年11月16日
专知会员服务
44+阅读 · 2020年10月31日
VALSE Webinar 19-22期 医学影像处理与分析
VALSE
9+阅读 · 2019年8月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月7日
Arxiv
0+阅读 · 2021年10月5日
Arxiv
10+阅读 · 2021年3月30日
VIP会员
相关资讯
VALSE Webinar 19-22期 医学影像处理与分析
VALSE
9+阅读 · 2019年8月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员