We consider a variant of the crash-fault gathering problem called stand-up indulgent gathering (SUIG). In this problem, a group of mobile robots must eventually gather at a single location, which is not known in advance. If no robots crash, they must all meet at the same location. However, if one or more robots crash at a single location, all non-crashed robots must eventually gather at that location. The SUIG problem was first introduced for robots operating in a two-dimensional continuous Euclidean space, with most solutions relying on the ability of robots to move a prescribed (real) distance at each time instant. In this paper, we investigate the SUIG problem for robots operating in a discrete universe (i.e., a graph) where they can only move one unit of distance (i.e., to an adjacent node) at each time instant. Specifically, we focus on line-shaped networks and characterize the solvability of the SUIG problem for oblivious robots without multiplicity detection.


翻译:我们考虑一个变种的崩溃故障集散问题,称为“Stand-Up Indulgent Gathering”(SUIG)。 在这个问题中,一组移动机器人必须最终聚集在单个位置上,该位置事先不为人知。 如果没有机器人发生故障,则它们必须在同一位置聚集。 然而,如果一个或多个机器人在单个位置发生故障,所有非崩溃机器人必须最终在那个位置聚集。 SUIG问题最初针对在二维连续欧几里得空间中运行的机器人进行了介绍,其中大多数解决方案依赖于机器人能够在每个时间瞬间移动指定的(实际)距离。 在本文中,我们在机器人只能在每个时间瞬间移动一个距离单位(即到相邻节点)的离散宇宙(即图形)中研究了SUIG问题。 具体而言,我们专注于线状网络,并描述了无意识机器人(即没有多重性检测)的SUIG问题的可解性。

0
下载
关闭预览

相关内容

机器人(英语:Robot)包括一切模拟人类行为或思想与模拟其他生物的机械(如机器狗,机器猫等)。狭义上对机器人的定义还有很多分类法及争议,有些电脑程序甚至也被称为机器人。在当代工业中,机器人指能自动运行任务的人造机器设备,用以取代或协助人类工作,一般会是机电设备,由计算机程序或是电子电路控制。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
44+阅读 · 2020年12月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年12月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员