We consider a variant of the crash-fault gathering problem called stand-up indulgent gathering (SUIG). In this problem, a group of mobile robots must eventually gather at a single location, which is not known in advance. If no robots crash, they must all meet at the same location. However, if one or more robots crash at a single location, all non-crashed robots must eventually gather at that location. The SUIG problem was first introduced for robots operating in a two-dimensional continuous Euclidean space, with most solutions relying on the ability of robots to move a prescribed (real) distance at each time instant. In this paper, we investigate the SUIG problem for robots operating in a discrete universe (i.e., a graph) where they can only move one unit of distance (i.e., to an adjacent node) at each time instant. Specifically, we focus on line-shaped networks and characterize the solvability of the SUIG problem for oblivious robots without multiplicity detection.
翻译:我们考虑一个变种的崩溃故障集散问题,称为“Stand-Up Indulgent Gathering”(SUIG)。 在这个问题中,一组移动机器人必须最终聚集在单个位置上,该位置事先不为人知。 如果没有机器人发生故障,则它们必须在同一位置聚集。 然而,如果一个或多个机器人在单个位置发生故障,所有非崩溃机器人必须最终在那个位置聚集。 SUIG问题最初针对在二维连续欧几里得空间中运行的机器人进行了介绍,其中大多数解决方案依赖于机器人能够在每个时间瞬间移动指定的(实际)距离。 在本文中,我们在机器人只能在每个时间瞬间移动一个距离单位(即到相邻节点)的离散宇宙(即图形)中研究了SUIG问题。 具体而言,我们专注于线状网络,并描述了无意识机器人(即没有多重性检测)的SUIG问题的可解性。