A neuromorphic camera is an image sensor that emulates the human eyes capturing only changes in local brightness levels. They are widely known as event cameras, silicon retinas or dynamic vision sensors (DVS). DVS records asynchronous per-pixel brightness changes, resulting in a stream of events that encode the brightness change's time, location, and polarity. DVS consumes little power and can capture a wider dynamic range with no motion blur and higher temporal resolution than conventional frame-based cameras. Although this method of event capture results in a lower bit rate than traditional video capture, it is further compressible. This paper proposes a novel deep learning-based compression scheme for event data. Using a deep belief network (DBN), the high dimensional event data is reduced into a latent representation and later encoded using an entropy-based coding technique. The proposed scheme is among the first to incorporate deep learning for event compression. It achieves a high compression ratio while maintaining good reconstruction quality outperforming state-of-the-art event data coders and other lossless benchmark techniques.
翻译:神经形态摄像头是一种模仿人类眼睛只捕捉本地亮度变化的图像传感器。 它们被广泛称为事件相机、硅视网膜或动态视觉传感器( DVS )。 DVS 记录的事件光亮变化无异于每像像亮度变化,导致一系列事件,将亮度变化的时间、位置和极度编码成country。 DVS 消耗的能量很小,并且能够捕捉比传统的框架相机更广大的动态范围,没有运动模糊和更高的时间分辨率。 虽然这种事件捕捉方法的结果比传统的视频捕捉率低一点,但它可以进一步压缩。 本文为事件数据提出了一个新的深层次的基于学习的压缩方案。 使用深信网( DBN), 高度事件数据被压缩成一种潜在的表达方式, 后又使用一种基于 entropy 的编码技术进行编码。 提议的方案是首先将事件压缩的深层次学习纳入其中。 它实现高压缩率, 同时保持良好的重建质量优于状态的状态数据编码器和其他无损基准技术。