While building convolutional network-based systems, the toll it takes to train the network is something that cannot be ignored. In cases where we need to append additional capabilities to the existing model, the attention immediately goes towards retraining techniques. In this paper, I show how to leverage knowledge about the dataset to append the class faster while maintaining the speed of inference as well as the accuracies; while reducing the amount of time and data required. The method can extend a class in the existing object detection model in 1/10th of the time compared to the other existing methods. S-Extension patch not only offers faster training but also speed and ease of adaptation, as it can be appended to any existing system, given it fulfills the similarity threshold condition.
翻译:在建设以革命网络为基础的系统时,培训网络所付出的代价是不可忽视的。在我们需要将额外能力附加到现有模型中的情况下,注意力立即转向再培训技术。在本文中,我展示了如何利用关于数据集的知识更快地附加该类数据,同时保持推论速度和理解度;同时减少了所需时间和数据的数量。这种方法可以将现有物体探测模型中的某一类与其他现有方法相比较,在10分之一的时间内扩展至其他现有方法。 S-扩展补丁不仅提供更快的培训,而且提供更快和容易的适应,因为它可以附在任何现有系统中,因为它满足了相似的临界条件。