A weakly infeasible semidefinite program (SDP) has no feasible solution, but it has approximate solutions whose constraint violation is arbitrarily small. These SDPs are ill-posed and numerically often unsolvable. They are also closely related to "bad" linear projections that map the cone of positive semidefinite matrices to a nonclosed set. We describe a simple echelon form of weakly infeasible SDPs with the following properties: (i) it is obtained by elementary row operations and congruence transformations, (ii) it makes weak infeasibility evident, and (iii) it permits us to construct any weakly infeasible SDP or bad linear projection by an elementary combinatorial algorithm. Based on our echelon form we generate a challenging library of weakly infeasible SDPs. Finally, we show that some SDPs in the literature are in our echelon form, for example, the SDP from the sum-of-squares relaxation of minimizing the famous Motzkin polynomial.


翻译:微弱不可行的半无限期方案(SDP)没有可行的解决办法,但是它有近似的解决办法,其限制的违反程度是任意的很小的。这些SDP是不可靠的,在数字上往往是无法解决的。它们也与“坏”线性预测密切相关,这些预测将正半无限期矩阵的锥体映射成非封闭的一组。我们描述了微弱不可行的SDP的简单梯子形式,其特性如下:(一) 它是通过小行操作和相容转换获得的,(二) 它使微弱的不可行性变得明显,以及(三) 它允许我们用基本的组合算法建造任何微弱的不可行的SDP或坏的线性投影。根据我们的精子形式,我们产生了一个具有挑战性的微弱不可行的SDP的图书馆。最后,我们展示文献中的一些SDP在我们的echelon形式中,例如,从将著名的Motzkin聚氨基质减缩中产生的SDP。

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
【AAAI2021】基于组间语义挖掘的弱监督语义分割
专知会员服务
15+阅读 · 2021年1月19日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月28日
Rectangular eigenvalue problems
Arxiv
0+阅读 · 2021年12月27日
Arxiv
0+阅读 · 2021年12月26日
VIP会员
相关VIP内容
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
【AAAI2021】基于组间语义挖掘的弱监督语义分割
专知会员服务
15+阅读 · 2021年1月19日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员