This paper presents an algorithm to generate a new kind of polygonal mesh obtained from triangulations. Each polygon is built from a terminal-edge region surrounded by edges that are not the longest-edge of any of the two triangles that share them. The algorithm is divided into three phases. The first phase consists of labeling each edge and triangle of the input triangulation according to its size; the second phase builds polygons (simple or not) from terminal-edges regions using the label system; and the third phase transforms each non simple polygon into simple ones. The final mesh contains polygons with convex and nonconvex shape. Since Voronoi based meshes are currently the most used polygonal meshes, we compare some geometric properties of our meshes against constrained Voronoi meshes. Several experiments are run to compare the shape and size of polygons, the number of final mesh points and polygons. Finally, we validate these polygonal meshes by solving a Laplace equation on an L-shaped domain using the Virtual Element Method (VEM) and show the optimal convergence rate of the numerical solution.
翻译:本文展示了一种算法, 以生成一种从三角形中获取的新类型的多边形网格。 每个多边形都是从末端区域建造的, 周围的边缘并不是两个共享三角中任何一个最长的边缘。 算法分为三个阶段。 第一阶段根据输入三角的大小给每个边缘和三角贴上标签; 第二阶段使用标签系统从末端区域建立多边形( 简单与否) ; 第三阶段将每个非简单多边形转换为简单多边形。 最终的网格包含具有等式和非convex形状的多边形。 由于基于Voronoi的线片目前是最常用的多边形网格线, 我们比较了输入三角形的几何等特性, 与受限制的Voronoimeshes进行对比。 一些实验正在比较多边形的形状和大小、 最后的网点和多边形的数目。 最后, 我们验证这些多边形模模模模形, 方法是用虚拟的Election 方法( VEM) 和显示最佳的趋同率。