In this work we consider a relativistic drift-kinetic model for runaway electrons along with a Fokker-Planck operator for small-angle Coulomb collisions, a radiation damping operator, and a secondary knock-on (Boltzmann) collision source. We develop a new scalable fully implicit solver utilizing finite volume and conservative finite difference schemes and dynamic mesh adaptivity. A new data management framework in the PETSc library based on the p4est library is developed to enable simulations with dynamic adaptive mesh refinement (AMR), parallel computation, and load balancing. This framework is tested through the development of the runaway electron solver that is able to dynamically capture both bulk Maxwellian at the low-energy region and a runaway tail at the high-energy region. To effectively capture features via the AMR algorithm, a new AMR indicator prediction strategy is proposed that is performed alongside the implicit time evolution of the solution. This strategy is complemented by the introduction of computationally cheap feature-based AMR indicators that are analyzed theoretically. Numerical results quantify the advantages of the prediction strategy in better capturing features compared with nonpredictive strategies; and we demonstrate trade-offs regarding computational costs. The full solver is further verified through several benchmark problems including manufactured solutions and solutions of physics models. We particularly focus on demonstrating the advantages of using implicit time stepping and AMR for runaway electron simulations.


翻译:本文考虑了漂移动力学模型下的疾行电子, 该模型包含小角度库仑碰撞的福克-普朗克算子,辐射阻尼算子以及次级敲击(玻尔兹曼)碰撞源。我们开发了一种新的可扩展的完全隐式求解器,利用有限体积和保守有限差分方案以及动态网格适应。在PETSc库和p4est库的基础上,开发了一种新的数据管理框架,以实现动态自适应网格细化(AMR)、并行计算和负载平衡。通过开发疾行电子求解器,测试了该框架,能够动态捕捉低能区域的体块Maxwellian和高能区域的散热电子尾巴。为了有效地通过AMR算法来捕获特征,提出了一种新的AMR指标预测策略,与解的隐式时间演化同时进行。该策略的补充是引入特征为基础的计算成本较低的AMR指标,并进行了理论分析。数值结果量化了预测策略相对于非预测策略在更好地捕捉特征方面的优势,并演示了计算成本方面的权衡。该全面的求解器通过多个基准问题进行了验证,包括人造解决方案和物理模型的解决方案。我们特别关注于演示使用隐式时间步进和AMR进行疾行电子模拟的优点。

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
机器学习组合优化
专知会员服务
107+阅读 · 2021年2月16日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
15+阅读 · 2022年6月14日
Arxiv
12+阅读 · 2018年1月12日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员