Multivariate Entropy quantification algorithms are becoming a prominent tool for the extraction of information from multi-channel physiological time-series. However, during the analysis of physiological signals from heterogeneous organ systems, certain channels may overshadow the patterns of others, resulting in information loss. Here, we introduce the framework of Stratified Entropy to control the prioritization of each channels' dynamics based on their allocation to respective strata, leading to a richer description of the multi-channel signal. As an implementation of the framework, three algorithmic variations of the Stratified Multivariate Multiscale Dispersion Entropy are introduced. These variations and the original algorithm are applied to synthetic and physiological time-series, formulated from electroencephalogram, arterial blood pressure, electrocardiogram, and nasal respiratory signals. The results of experiments conducted on synthetic time-series indicate that the variations successfully prioritize channels based on their strata allocation while maintaining the low computation time of the original algorithm. Based on the physiological time-series results, the distributions of features extracted from healthy sleep versus sleep with obstructive sleep apnea display increased statistical difference for certain strata allocations in the variations. This suggests improved physiological state monitoring by the variations. Furthermore, stratified algorithms can be modified to utilize a priori knowledge for the stratification of channels. Thus, our research provides a novel approach of multivariate analysis for the extraction of previously inaccessible information from heterogeneous systems.
翻译:多种变数的量化算法正在成为从多通道生理时间序列中提取信息的一个突出工具。然而,在分析来自不同器官系统的生理信号时,某些渠道可能会掩盖其他渠道的模式,从而造成信息丢失。在这里,我们引入了Stravention Entropy框架,以控制根据分配给各个渠道的情况对每个渠道动态进行优先排序,从而导致对多通道信号的描述更加丰富。作为框架的实施,引入了三个变量,即“分流多变数多尺度分散式”的多频谱。这些变数和原始算法被用于合成和生理时间序列,这些变数来自电子脑图、动脉动血压、心电图和鼻呼吸信号。合成时间序列的实验结果表明,这些变数成功地根据各渠道的分配排列了优先顺序,同时保持了原始算法的低时间段。根据生理时间序列的结果,从健康睡眠和睡眠阻塞式睡眠中提取的特征的分布。这些变数和原始算法在合成和生理时间序列序列分配方面增加了统计差异,这些变数来自电子脑图、动血液血压、血液血压、心血管血压压力、心变数分析的变数,这显示了我们变的基因变数的变数的基因变数分析提供了新的变数分析。 通过基因变数的基因变数分析提供了新的变数式的基因变数分析,这提供了新的变数变数的变数的变数。 提供了新的变数式的基因变数法的变数法的变数。