Rodents communicate through ultrasonic vocalizations (USVs). These calls are of interest because they provide insight into the development and function of vocal communication, and may prove to be useful as a biomarker for dysfunction in models of neurodevelopmental disorders. Rodent USVs can be categorised into different components and while manual classification is time consuming, advances in neural computing have allowed for fast and accurate identification and classification. Here, we adapt a convolutional neural network (CNN), VocalMat, created for analysing mice USVs, for use with rats. We codify a modified schema, adapted from that previously proposed by Wright et al. (2010), for classification, and compare the performance of our adaptation of VocalMat with a benchmark CNN, DeepSqueak. Additionally, we test the effect of inserting synthetic USVs into the training data of our classification network in order to reduce the workload involved in generating a training set. Our results show that the modified VocalMat outperformed the benchmark software on measures of both call identification, and classification. Additionally, we found that the augmentation of training data with synthetic images resulted in a marked improvement in the accuracy of VocalMat when it was subsequently used to analyse novel data. The resulting accuracy on the modified Wright categorizations was sufficiently high to allow for the application of this software in rat USV classification in laboratory conditions. Our findings also show that inserting synthetic USV calls into the training set leads to improvements in accuracy with little extra time-cost.


翻译:鼠标通过超声频(USVs) 进行交流。 这些呼声很有意义, 因为它们提供了对声频通信的发展和功能的洞察力, 并且可能证明作为神经发育紊乱模型机能失灵的生物标志。 鼠标USV可以分解成不同的构件, 而人工分类是耗时的, 神经计算的进步使得能够快速和准确地识别和分类。 在这里, 我们调整了用于分析小鼠USV的动态神经网络( CNN ), VocalMat, 供老鼠使用。 我们根据Wright等人( 2010年) 的建议, 编制了一个经过修改的系统, 用于分类, 并可能被证明对神经发育失常模型的功能进行生物标记。 此外, 我们测试了将合成USVVVs纳入我们分类网络培训数据的效果, 以便降低创建一套培训集的工作量。 我们的结果表明, 修改后的VocalMatt 改进了用于计算和分类方法的基准软件。 此外, 我们发现, 在合成图像中培训数据的升级数据升级后, 也导致对实验室数据进行了充分的精确性分析。</s>

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
最新《Transformers模型》教程,64页ppt
专知会员服务
309+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员