Data deduplication saves storage space by identifying and removing repeats in the data stream. Compared with traditional compression methods, data deduplication schemes are more time efficient and are thus widely used in large scale storage systems. In this paper, we provide an information-theoretic analysis on the performance of deduplication algorithms on data streams in which repeats are not exact. We introduce a source model in which probabilistic substitutions are considered. More precisely, each symbol in a repeated string is substituted with a given edit probability. Deduplication algorithms in both the fixed-length scheme and the variable-length scheme are studied. The fixed-length deduplication algorithm is shown to be unsuitable for the proposed source model as it does not take into account the edit probability. Two modifications are proposed and shown to have performances within a constant factor of optimal with the knowledge of source model parameters. We also study the conventional variable-length deduplication algorithm and show that as source entropy becomes smaller, the size of the compressed string vanishes relative to the length of the uncompressed string, leading to high compression ratios.


翻译:数据解析通过辨别和删除数据流中的重复来节省存储空间。 与传统的压缩方法相比, 数据解析方案更具有时间效率, 因而在大型储存系统中广泛使用。 在本文中, 我们对数据流中的重复算法的性能进行了信息理论分析, 而重复并不准确。 我们引入了一个参考概率替代的源模型。 更准确地说, 重复字符串中的每个符号都被替换为给定的编辑概率。 正在研究固定长度方案和可变长度方案中的解析算法。 固定长度解算法被显示不适合拟议的源模型, 因为它没有考虑到编辑概率 。 提出两项修改, 并显示其性能与源模型参数知识的常数最佳性系数一致。 我们还研究传统的变量解析算法, 并显示作为源的酶变小, 压缩字符串的消散大小与未压缩字符串长度相对, 导致高压缩比率。

0
下载
关闭预览

相关内容

【经典书】线性代数元素,197页pdf
专知会员服务
56+阅读 · 2021年3月4日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Effective.Modern.C++ 中英文版,334页pdf
专知会员服务
68+阅读 · 2020年11月4日
【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2021年9月5日
Arxiv
0+阅读 · 2021年9月3日
Arxiv
0+阅读 · 2021年9月2日
VIP会员
相关VIP内容
【经典书】线性代数元素,197页pdf
专知会员服务
56+阅读 · 2021年3月4日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Effective.Modern.C++ 中英文版,334页pdf
专知会员服务
68+阅读 · 2020年11月4日
【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员