This paper proposes a new algorithm, named Householder Dice (HD), for simulating dynamics on dense random matrix ensembles with translation-invariant properties. Examples include the Gaussian ensemble, the Haar-distributed random orthogonal ensemble, and their complex-valued counterparts. A "direct" approach to the simulation, where one first generates a dense $n \times n$ matrix from the ensemble, requires at least $\mathcal{O}(n^2)$ resource in space and time. The HD algorithm overcomes this $\mathcal{O}(n^2)$ bottleneck by using the principle of deferred decisions: rather than fixing the entire random matrix in advance, it lets the randomness unfold with the dynamics. At the heart of this matrix-free algorithm is an adaptive and recursive construction of (random) Householder reflectors. These orthogonal transformations exploit the group symmetry of the matrix ensembles, while simultaneously maintaining the statistical correlations induced by the dynamics. The memory and computation costs of the HD algorithm are $\mathcal{O}(nT)$ and $\mathcal{O}(nT^2)$, respectively, with $T$ being the number of iterations. When $T \ll n$, which is nearly always the case in practice, the new algorithm leads to significant reductions in runtime and memory footprint. Numerical results demonstrate the promise of the HD algorithm as a new computational tool in the study of high-dimensional random systems.


翻译:本文提出一个新的算法, 名为“ 住户数据 ” (HD), 用于模拟含有翻译变量属性的密集随机矩阵的动态。 例如, Hausian 组合组合, Haar 分布的随机正方形组合, 以及它们具有复杂价值的对应方。 模拟的“ 直接 ” 方法, 即首先产生一个从共同点产生的密度 $\ times n$ 矩阵, 需要至少$\ mathcal{O} (n%2) 在空间和时间上的资源。 Hd 算法克服了这个 $mathcal{O} (n2) 的瓶颈, 使用推迟决定的原则: 而不是提前固定整个随机矩阵, 让它随动态而随机地展开。 在这种矩阵自由算法的核心是( random) 住户反射器的适应和循环构造。 这些或二次的变形变式, 利用矩阵组合的组合的对数, 同时保持由动态原则引发的统计相关性 $mall {O} 数值 的缩算算算算算算 。 。 在 美元 值 中, 值 值 值 值 值 值 值 值 值 和 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 的 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值

0
下载
关闭预览

相关内容

【经典书】C语言傻瓜式入门(第二版),411页pdf
专知会员服务
51+阅读 · 2020年8月16日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月20日
BranchOut: Regularization for Online Ensemble Tracking with CNN
统计学习与视觉计算组
9+阅读 · 2017年10月7日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月17日
Arxiv
0+阅读 · 2021年3月15日
Arxiv
3+阅读 · 2018年10月18日
Deep Randomized Ensembles for Metric Learning
Arxiv
5+阅读 · 2018年9月4日
VIP会员
相关VIP内容
【经典书】C语言傻瓜式入门(第二版),411页pdf
专知会员服务
51+阅读 · 2020年8月16日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月20日
BranchOut: Regularization for Online Ensemble Tracking with CNN
统计学习与视觉计算组
9+阅读 · 2017年10月7日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员