This paper provides a new abstract stability result for perturbed saddle-point problems which is based on a proper norm fitting. We derive the stability condition according to Babu\v{s}ka's theory from a small inf-sup condition, similar to the famous Ladyzhenskaya-Babu\v{s}ka-Brezzi (LBB) condition, and the other standard assumptions in Brezzi's theory under the resulting combined norm. The proposed framework allows to split the norms into proper seminorms and not only results in simpler (shorter) proofs of many stability results but also guides the construction of parameter robust norm-equivalent preconditioners. These benefits are demonstrated with several examples arising from different formulations of Biot's model of consolidation.


翻译:本文为动荡的马鞍问题提供了一个新的抽象稳定结果,这是基于适当的规范。 根据Babu\v{s{s}ka的理论,我们从一个小的内侧条件(类似于著名的Ladyzhenskaya-Babu\v{s}ka-Brezzi(LBB)条件)和Brezzi理论中其他标准假设(根据由此产生的综合规范)中的其他标准假设(LBB)来得出稳定状态。 拟议的框架允许将规范分为适当的半调,不仅可以产生许多稳定性结果的更简单(更简短)证据,而且还指导了参数稳健的规范等同前提的构建。 这些好处以生物公司合并模式的不同配方所产生的几个例子来证明。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
124+阅读 · 2020年9月8日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员