Estimation and inference with modern longitudinal data from wearable devices, which consist of biological signals at high-frequency time points, is burdened by massive computational costs. We propose a distributed estimation and inference procedure that efficiently estimates both functional and scalar parameters with intensively measured longitudinal outcomes. The procedure overcomes computational difficulties through a scalable divide-and-conquer algorithm that partitions the outcomes into smaller sets. We circumvent traditional basis selection problems by analyzing data using quadratic inference functions in smaller subsets such that the basis functions have a low dimension. To address the challenges of combining estimates from dependent subsets, we propose a statistically efficient one-step estimator derived from a constrained generalized method of moments objective function with a smoothing penalty. We show theoretically and numerically that the proposed estimator is as statistically efficient as non-distributed alternative approaches and more efficient computationally. We demonstrate the practicality of our approach with the analysis of accelerometer data from the National Health and Nutrition Examination Survey.
翻译:暂无翻译