Estimating the impact of trauma treatment protocols is complicated by the high dimensional yet finite sample nature of trauma data collected from observational studies. Viscoelastic assays are highly predictive measures of hemostasis. However, the effectiveness of thromboelastography(TEG) based treatment protocols has not been statistically evaluated.To conduct robust and reliable estimation with sparse data, we built an estimation "machine" for estimating causal impacts of candidate variables using the collaborative targeted maximum loss-based estimation(CTMLE) framework.The computational efficiency is achieved by using the scalable version of CTMLE such that the covariates are pre-ordered by summary statistics of their importance before proceeding to the estimation steps.To extend the application of the estimator in practice, we used super learning in combination with CTMLE to flexibly choose the best convex combination of algorithms. By selecting the optimal covariates set in high dimension and reducing constraints in choosing pre-ordering algorithms, we are able to construct a robust and data-adaptive model to estimate the parameter of interest.Under this estimation framework, CTMLE outperformed the other doubly robust estimators(IPW,AIPW,stabilized IPW,TMLE) in the simulation study. CTMLE demonstrated very accurate estimation of the target parameter (ATE). Applying CTMLE on the real trauma data, the treatment protocol (using TEG values immediately after injury) showed significant improvement in trauma patient hemostasis status (control of bleeding), and a decrease in mortality rate at 6h compared to standard care.The estimation results did not show significant change in mortality rate at 24h after arrival.
翻译:由于观测研究收集的创伤数据具有高维但有限的样本性质,估算创伤治疗规程的影响就变得复杂了。 动态弹性分析是高度预测的超光谱类的预测尺度。 然而,没有从统计上评估基于血栓动脉造影(TEG)治疗规程的有效性。 为了用稀有的数据进行稳健可靠的估计,我们用协作性、有针对性的最大损失估计(CTMLE)框架,为估算候选变量的因果关系,建立了一个估算“机器”。 通过使用可缩放的CTMLE(CTMLE)的可缩放版的计算效率,使共变体在进行估算之前以其重要性的汇总统计数据为预排序。 为了扩大基于血栓造影(TEGEGEG)的运用率,我们与CTMLEGL(T)一起运用超强的超强学习来灵活地选择算法的最佳组合。 通过选择高维度和减少选择预测损失计算法的制约,我们得以构建一个坚固和数据适应性下降的模型来估计利息参数。 根据这一估算框架,CTM(CTMWILEM的精确度估算的精确性估算结果,在模拟的精确度估算中显示了另一个的精确度测值测值中,CEBALEBITM值测算法的精确度测算法的精确性测算法的精确性测算法的精确率,在演示测算法的精确性测算法的精确性测算结果的精确率中显示了另一个测算法的精确率。